Физики, химики и математики: жизнь и открытия. часть 4

Автор:
kaa
Печать
дата:
26 февраля 2016 01:00
Просмотров:
1131
Комментариев:
0
Физики, химики и математики: жизнь и открытия. часть 4


В этом выпуске вы в интересных деталях узнаете об очень важных событиях в науке: об открытии радиоволн, рентгеновского излучения и радиоактивности




Как Герц открыл радиоволны

Физики, химики и математики: жизнь и открытия. часть 4


В 1886 году Генрих Герц, чьим именем названа единица частоты (в Герцах измеряют, к примеру, число электромагнитных колебаний в секунду), был молодым профессором Университета Карлсруэ, тихой учебной заводи, где он вел курсы вроде метеорологии для агрономов. Располагая минимумом средств и не слишком веря в успех, он прилагал все усилия, чтобы в университете велись хоть какие-то научные исследования. Его самого занимало электромагнитное излучение и в особенности теория Максвелла.

Летом 1886-го он женился, и в день его великого открытия, в ноябре того же года, жена Герца, весьма интересовавшаяся его работой, оказалась у него в лаборатории. Герц приспособил индукционную катушку, чтобы генерировать гигантские искры в зазоре между парой небольших сфер на концах металлических стержней. Это была довольно обычная установка для демонстрационных опытов, однако Герц внес в нее кое-какие усовершенствования: стержни были длиннее, а сферы на концах, служившие конденсаторами, где накапливался заряд, больше, чем обычно. Ширину зазора можно было варьировать, а реостат (проводник с переменным сопротивлением) регулировал разность потенциалов в зазоре. Доведя сопротивление реостата до нуля, чтобы вызвать разряд, Герц с удивлением заметил, что слабые искры не прекращают проскакивать. На скамье рядом с прибором лежала еще одна металлическая катушка с парой контактов, куда были насажены сферы, а между ними оставлен зазор для искрового разряда. Во время работы с индукционной катушкой Герц (или, может, его жена) заметили не только ослепительную вспышку между сферами того контура, который катушка подпитывала, но и едва различимые искры в катушке поодаль (которая не была никуда подключена). Ученому выпал редчайший шанс. Как впоследствии писал он сам, "невозможно было прийти к этому явлению, основываясь только на теории".

Тогда Герц осознал, что странное и необъяснимое происшествие - знак чего-то нового. Совсем немного времени потребовалось, чтобы заключить, что контур-приемник реагировал именно на колебания тока в искровом промежутке первого контура, и измерить частоту колебаний с помощью простейшего стробоскопа - вращающегося зеркальца. Герц показал, что он наблюдал вовсе не явление индукции, как предполагал вначале: до катушки-детектора добиралось излучение, которому для этого приходилось пройти сквозь всю комнату. Длина волны излучения была невероятно большой, зато путешествовало оно со скоростью света. Так был открыт путь к радио и всему, что за ним последовало.

Физики, химики и математики: жизнь и открытия. часть 4


До технологической революции, вызванной его открытием, Герц не дожил: вскоре он умер от заражения крови в возрасте 36 лет. Случилось это в Бонне - ученый переехал туда, поскольку ему предоставили более высокую должность в Боннском университете. Вот что Герц писал родителям незадолго до смерти:

"Что бы со мной ни стряслось, не печальтесь. Наоборот, вам стоит слегка гордиться - ведь я из тех избранных, которым отведено прожить недолго и при этом ровно столько, сколько следует. Я не выбирал себе такую судьбу, но, раз она мне досталась, следует ею довольствоваться; и, если бы мне дали право выбирать, я, возможно, ее бы и выбрал".

Это напоминает слова Энрико Ферми, который умер - и тоже обидно рано - спустя 70 лет. "Столь ранняя смерть не слишком меня беспокоит, - заявлял Ферми, - поскольку большую часть того, на что я был способен, я сделал".

Обнаружение радиоволн - пример синхронного открытия, какие часто встречаются в истории науки. Идеи носятся в воздухе. Англичанин Оливер Лодж наблюдал электромагнитное излучение в том же году, что и Герц. Однако вместо того, чтобы написать статью, он отправился покорять Альпы, собираясь по возвращении подготовить работу к печати. Но было уже поздно: в Лондоне его поджидало известие о статье Герца. Удивительно, но, похоже, Лодж не слишком тогда расстроился.


Рентген обнаруживает неизвестное излучение

Физики, химики и математики: жизнь и открытия. часть 4


Вильгельм Конрад Рентген, выдающийся физик-экспериментатор, в 1883 году, в возрасте 43 лет, был назначен профессором и одновременно главой физического института при Университете Вюрцбурга в Баварии. Место это к тому моменту выглядело тихой заводью, однако Рентген, даже несмотря на привычку работать самостоятельно, оказался замечательным руководителем и превратил институт из посредственного в весьма неплохой научный центр. Ученого тогда особенно интересовало электромагнитное излучение, и он взялся разрешить спорный и крайне актуальный тогда вопрос: чем именно - частицами или волнами - являются недавно открытые виды излучений. В частности, отрицательно заряженные катодные лучи. Вот как он пришел к своему открытию, одному из самых поразительных в истории физики.

Вечером в пятницу, 8 ноября 1895 года, Рентген работал один в собственной лаборатории. Чтобы увидеть траектории катодных лучей, сгенерированных в вакуумной трубке, Рентген перегородил им путь флуоресцентным экраном. Разглядеть бледное зеленоватое свечение экрана в тех местах, куда попадали лучи, было трудно, поэтому ученый потушил свет во всем помещении. Катодную трубку пришлось обернуть черным картоном, чтобы не мешали вспышки искровых разрядов, за счет которых и возникали лучи. В темноте Рентген заметил мерцающее пятно света невдалеке от приборов. Возможно, свет пробивался через шторы - но ученый ничего такого не обнаружил.

Мерцала, как оказалось, буква, нарисованная фосфоресцентной краской. Рентген знал, что преодолеть даже полметра воздуха вне трубки катодные лучи неспособны. Значит, сквозь картон проходит какое-то вторичное излучение. Рентген поставил на его пути игральную карту, потом целую колоду - но и то и другое оказалось для излучения прозрачным. Даже книга отбрасывала на флуоресцентный экран всего-навсего слабую тень. Но когда ученый заменил прежние преграды небольшим куском свинца, рядом с его тенью Рентген с удивлением заметил контуры собственных пальцев и внутри них - очертания костей.

Рентген, без сомнения, мгновенно осознал, что совершил открытие, которое всколыхнет ровную поверхность физики XIX века. Примерно в то же время профессор Филипп фон Жоли советовал студенту Максу Планку, в будущем великому теоретику, сменить род занятий, так как с устройством вещества ученые уже почти что разобрались до конца.

В этот же исторический вечер Рентген установил, что излучение, названное им "икс-лучами", возникает там, где катодные лучи сталкиваются со стенками трубки. Выяснилось также, что новые лучи, в отличие от катодных, не отклоняются магнитным полем - значит, они лишены электрического заряда.

Еще несколько недель Рентгена редко видели вне лаборатории. Все это время он получал изображения самых разных предметов, включая, к ужасу подопытной, руку собственной жены: на снимке были отчетливо видны контуры колец и структура костей. Первый отчет, напечатанный в самом начале следующего года, стал сенсацией. Лорд Кельвин, один из крупнейших физиков того времени, считал статью розыгрышем, пока его не переубедили опыты, проведенные в других лабораториях мира. За несколько лет вышли тысячи статей, посвященных рентгеновским лучам. Довольно скоро их возможности осознали медики. Опасности, связанные с лучами, тоже выявились довольно быстро, и в игру вступили коммерсанты: одна английская фирма выпустила "рентгенозащитное" белье.

Физики, химики и математики: жизнь и открытия. часть 4


Для самого Рентгена открытые им лучи были причиной острого дискомфорта: он был свято предан классической физике, а то обстоятельство, что новое явление не вписывалось в классический миропорядок, очень расстраивало ученого. Самый заметный из его учеников, Рудольф Ладенбург, который позже стал профессором Принстонского университета, оказался в Вюрцбурге спустя несколько лет после истории с лучами, и Рентген поручил ему задачу по теории вязкости. Скорость падения шара в жидкости определяется ее вязкостью - по уравнению, выведенному в середине XIX века кембриджским ученым Стоксом. Рентгена же интересовало, что будет, если заключить шар и жидкость в узкую трубку, где неизбежно вязкое трение о стенки. Ради эксперимента специальную трубку провели через все этажи здания, от крыши до фундамента, и наполнили касторовым маслом. Если верить Ладенбургу, ничто не могло доставить Рентгену большего удовольствия, чем наблюдать за спуском шара в точно рассчитанный срок.

В 1901 году за открытие рентгеновских лучей ученому присудили самую первую Нобелевскую премию по физике, и несколько других физиков, также работавших с катодными лучами, получили повод сожалеть о том, что открытие сделано не ими. Фредерик Смит из Оксфорда однажды обнаружил, что фотопластинки, хранившиеся рядом с катодной трубкой, обычно засвечивались, и потому отодвинул их подальше, чтобы не тратить время на анализ причин. Но больше всех был расстроен Филипп Леннард (который позже станет нобелевским лауреатом за свои исследования излучения). Леннард не мог заставить себя даже произнести имя Рентгена вслух. Впрочем, он вообще оказался не в силах понять и принять те грандиозные открытия в теоретической физике, которые потрясли естествознание в первые два десятилетия XX века: так, он сделался яростным и непримиримым противником Эйнштейна и впоследствии убежденным нацистом.


Открытие радиоактивности

Физики, химики и математики: жизнь и открытия. часть 4


Анри Беккерель (1852 - 1908) принадлежал к уважаемой научной династии: кафедру физики в Национальном музее естественной истории он возглавил после отца и деда, чтобы позже уступить ее сыну.

В 1896 году Беккерель был поглощен охотой за миражом. Как и всех физиков того времени, его потрясло до глубины души открытие рентгеновских лучей. Если катодные лучи, попадая в стекло, способны порождать вторичное излучение, то почему бы видимому свету не проделывать того же самого с флуоресцентным материалом? Чтобы проверить эту гипотезу, ошибочную от начала до конца, Беккерель в качестве флуоресцентного материала взял кристалл одного из соединений урана. К фотографической пластинке он прикрепил медный крест, спрятал то и другое под слоем черной бумаги, кристалл расположил сверху и выставил всю конструкцию на солнце. И тем не менее, когда пластинку проявили, на ней обнаружился потемневший участок, на котором можно было легко различить контуры креста.

Беккереля, казалось бы, должен был обрадовать результат, подтверждавший его теорию. Но все же, как положено честному экспериментатору, он решил повторить опыт. Стояли пасмурные февральские дни, солнца совсем не было, поэтому Беккерель оставил свою конструкцию на несколько суток в ящике стола. Люминесценция всегда слегка запаздывает (именно поэтому циферблаты часов светятся ночью, хотя побывали на солнце днем), и Беккерель решил проявить пластинку, ожидая найти слабое потемнение за счет остаточного эффекта. Английский физик сэр Уильям Крукс, посетивший тогда лабораторию французского собрата, писал, что после нескольких дней отвратительной погоды тот проявил пластинку, потому что "устал ждать (или благодаря бессознательному дару предвидения)". Так или иначе, изображение, которое увидел Беккерель, не уступало в плотности потемнения первому образцу. Беккерель догадался: что бы ни засвечивало пластинку, к солнечному свету это отношения не имеет - и начал перебирать другие соединения урана, которые давали похожий эффект. Так было со всеми, кроме одного: то был минерал, известный как урановая смолка; его действие было гораздо сильнее. Согласно новой гипотезе, минерал содержал вещество с большей радиоактивностью - так Пьер и Мария Кюри позже назовут это свойство.

Вскоре Беккерель обнаружил: излучение легко заметить, если поместить образец вблизи электроскопа - простого инструмента, чувствительного к наведенному электрическому заряду. Излучение Беккереля заряжало металл-проводник в электроскопе, откуда следовало, что оно порождает ионы (заряженные частицы), проходя сквозь толщу воздуха. Беккерель так и понял суть своего открытия и оставался при твердом убеждении, что замеченное им явление - новая и необычная разновидность флуоресценции. Другими словами, результат испускания энергии (временно запасенной в молекуле) в форме видимого света. Кюри оставалось найти истинный источник излучения, а Резерфорду в Кембридже - выявить его природу.

Физики, химики и математики: жизнь и открытия. часть 4


Забавная историческая ремарка к открытию Беккереля: все успели забыть, что похожее наблюдение уже было сделано в Париже на сорок лет раньше. Абель Ньепс де Сен-Виктор прославился своими нововведениями в фотографии, особенно изобретением альбуминовой печати. Интерес к химии и свойствам света привел его в лабораторию к заслуженному химику-органику Мишелю Эжену Шеврелю. Шеврель, глава Музея естественной истории, был заодно научным консультантом Мануфактуры гобеленов и в свое время заметно повлиял на взгляды Сера и школы пуантилистов. (Шеврель, кстати, мог бы похвастаться наиболее продолжительной в мире научной карьерой - он активно работал до самой смерти в возрасте 103 лет). При поддержке Шевреля Ньепс провел исследование флуоресцентных и фосфоресцентных веществ, и в 1857 году сообщил буквально следующее: рисунок на картоне, выполненный нитратом урана, оставляет отпечаток на светочувствительной бумаге - примитивном прототипе фотопленки. Фокус с урановым рисунком срабатывал и в темноте, и на солнечном свету. Даже когда фотобумагу отодвигали на 3 сантиметра, все опять повторялось. После 1857-го появилось еще несколько сообщений об этом феномене, и они вызвали заметный интерес - в том числе и у отца Анри Беккереля, Эдмонда. Помнил ли Анри о Ньепсе к 1896 году, когда ставил свой знаменитый эксперимент? И если нет, возможно, все же поддался влиянию каких-то смутных воспоминаний, проявляя свою фотопластинку?

Открытие радиоактивности, как и открытие рентгеновских лучей, поначалу вызывало недоверие. Английский физиолог сэр Генри Дейл (1875 - 1968) вспоминал, как проходило специальное собрание Кембриджского клуба естественных наук, где почтенный Р.Дж. Стретт, сын знаменитого лорда Рэлея и сам по себе заметный физик, выступил с речью о наблюдениях Беккереля; его рассуждения заставили одного из студентов (в будущем - известного физика-теоретика) воскликнуть: "Но, Стретт, если эта история про Беккереля правда, то она нарушает закон сохранения энергии!" Своим замечанием он нащупал самое уязвимое место в теории. Только когда природа радиоактивности стала ясна (активный элемент превращается в инертный, возможно, после долгой цепочки превращений, пока вся радиоактивность не сойдет на нет), парадокс был устранен.


Похвала Гильберта


Давид Гильберт (1862 - 1943), прославленный немецкий математик, глава Математического института при Гёттингенском университете, собрал вокруг себя лучших математиков того времени. Когда нацисты пришли к власти, Гильберт, достигший уже весьма преклонного возраста, открыто возражал против увольнений своих коллег-евреев.

Физики, химики и математики: жизнь и открытия. часть 4


О рассеянности Гильберта ходили легенды. Один из его студентов приводил такой пример: как-то супруги Гильберт ждали гостей к ужину. Увидев галстук мужа, госпожа Гильберт попросила его надеть другой, менее отвратительный. Гильберт послушно пошел в свою комнату менять галстук. И вот уже и гости пришли, но Гильберт все не появлялся. Вскоре его обнаружили спящим в спальне. Сняв галстук, он совершил привычную последовательность действий, которая оканчивалась надеванием пижамы и кроватью.

В 20-х годах прошлого века один из самых блестящих студентов Гильберта написал статью, в которой пытался доказать гипотезу Римана - давний вызов математикам, озабоченным одним важным аспектом теории чисел. Студент показал работу Гильберту, который изучил ее внимательно и был искренне впечатлен глубиной доводов, но, к несчастью, обнаружил там ошибку, которую даже он сам не мог устранить. Год спустя студент умер. Гильберт попросил у убитых горем родителей разрешения произнести надгробную речь. В то время как родные и близкие под проливным дождем рыдали у могилы юноши, Гильберт начал свою речь:

- Какая трагедия, - сказал он, - что столь даровитый молодой человек погиб прежде, чем представилась возможность доказать, на что он способен. Но, - продолжил Гильберт, - хотя в его доказательство римановской гипотезы и вкралась ошибка, возможно, к решению знаменитой задачи придут тем же путем, каким к нему двигался покойный. Действительно, - продолжил он с оживлением, - рассмотрим функцию комплексной переменной...


Продолжение следует!

0 не понравился
6 понравился пост
 
Незарегистрированные посетители не могут оценивать посты
 
 
 
 

 
 
 
 

Информация

 
 
 
 
 
 
 
 
 

Оставлять свои CRAZY комментарии могут только зарегистрированные пользователи.
Пожалуйста пройдите простую процедуру регистрации или авторизируйтесь под своим логином. Также вы можете войти на сайт, используя существующий профиль в социальных сетях (Вконтакте, Одноклассники, Facebook, Twitter и другие)

 
 
 
 
 
Наверх