uCrazy.Ru / Физики, химики и математики: жизнь и открытия. часть 6

Физики, химики и математики: жизнь и открытия. часть 6



В этой части вы узнаете много-много интересных событий в мире науки 20-го века


Часть 1 Часть 2 Часть 3 Часть 4 Часть 5

Мария Кюри и Французская Академия Наук

Физики, химики и математики: жизнь и открытия. часть 6


Открытие радия, за которое Марию и Пьера Кюри в 1903 году наградили Нобелевской премией (вместе с Анри Беккерелем), стало самым заметным событием во французской науке того времени. Мария Кюри, в девичестве Мария Склодовская, родилась в 1867 году в Польше, и потому ксенофобская правая пресса не упускала случая раздуть скандал вокруг ее имени. Так, например, темой множества газетных статей стал ее роман со знаменитым физиком Полем Ланжевеном (случилось это через много лет после гибели Пьера Кюри в дорожном происшествии). Жажда признания в неродной стране побудила Марию Кюри баллотироваться во Французскую академию наук. В этом ее поддерживали главные светила французской науки, включая величайшего из них - Анри Пуанкаре. Однако в те времена Академия состояла исключительно из мужчин и упорно отвергала всех претендентов-женщин.

Будучи одной из пяти академий, созданных еще в XVII веке при короле Людовике XIV, Академия наук погрязла в традициях и ритуалах.



В 1911 году в ней состояли 68 человек, и со смертью одного из них образовалось вакантное место. Трижды в год пять академий собирались вместе на пленарное заседание, и по совпадению одно из таких заседаний последовало сразу же за выдвижением кандидатуры мадам Кюри. Возобновление вопроса о женском членстве вызвало оживление в прессе и в высшем обществе, поэтому на собрание явились сразу 163 академика - вдвое больше, чем обычно. Заседание началось с выступлений защитников мадам Кюри, потом сказали свое слово и ее противники. Президент Академии моральных и политических наук, заверив присутствовавших в том, что отцы-основатели Академии и не мыслили увидеть в своих рядах дам, предостерег коллег от страшной ошибки - "пробить брешь в единстве этого элитарного органа, Института Франции". Речь его встретили бурными аплодисментами.

Пуанкаре возразил, что автономия отдельных академий - нерушимая традиция и что члены других академий не вправе вмешиваться в решения Академии наук. На это ответил некий юрист из Академии моральных и политических наук, заметивший, что избрание женщины в Институт Франции (в состав которого входят все пять академий) касается всех сразу. Последствия могут быть пугающими, ибо если институт начнет опрометчиво принимать в академики женщин, то почему бы одной из них когда-нибудь не стать его президентом?

После нескольких таких перепалок в аудитории стало шумно, все жаждали высказаться по столь животрепещущему вопросу. Тогда председатель попытался призвать публику к порядку и, чтобы удержать ситуацию под контролем, даже встал на президентский трон. В итоге члены Академии наук проголосовали за "сохранение незыблемых традиций Института" 85 голосами против 60. Мнения в прессе, разумеется, разделились.

И это было только начало: спустя несколько дней комитет Академии наук собрался рассмотреть кандидатуру Марии Кюри за закрытыми дверями. Невзирая на уже проведенное голосование, ее включили в список рекомендованных первой, а за ней следовали еще шестеро запасных (но определенно достойных) кандидатов. Голосование членов Академии наук, предваряемое жестокими спорами, состоялось неделей позже. Был озвучен, и не впервые, закулисный аргумент, что все выдающиеся работы Марии Кюри были выполнены совместно с мужем, которому, вероятно, она только помогала, а после его смерти - с другими ассистентами-мужчинами, которые, вероятно, тоже были достойными учеными. Кроме того, разве мало ей было оказано почестей? И не пришла ли теперь очередь новых имен? Возникло целое движение за то, чтобы избрать кандидата из "запасных", а именно инженера-электрика Эдуарда Бранли, за которым числился важный вклад в создание беспроволочного телеграфа. Крайне правая газета L'Action Francise, славившаяся шовинизмом и ксенофобией, представила мадам Кюри как выдвиженку дрейфусаров-леворадикалов, стремящихся не допустить избрания в академики католика и чистокровного француза Бранли. Какие бы резоны ни двигали блистательными академиками, именно Бранли и стал в итоге их законно избранным коллегой.


Прибор для измерения магнитного момента - сигара Штерна



Отто Штерн (1888 - 1969) называл себя "экспериментальным теоретиком". Великий американский физик Исидор Раби видел в Штерне, с которым сотрудничал в молодости, сочетание всех черт идеального ученого сразу. Тот был гениален, скромен и великодушен и вдобавок отличался превосходным, как писал Раби, "хорошим" вкусом в исследованиях: он безошибочно находил ответы к задачам первостепенной важности, поражая остроумием, а его экспериментальные работы выделялись "стилем и умом". Сначала Штерн решил посвятить себя теоретической физике и несколько лет проработал ассистентом у Альберта Эйнштейна, которому приходился родственником. Позже Штерн рассказывал, уже своему ассистенту, Отто Фришу, как они с Эйнштейном вместе ходили по борделям, поскольку это были тихие и спокойные места, где ничто не мешало говорить о физике. Одна из теоретических работ Штерна, которая ставила точку в давней нерешенной проблеме из области статистической механики, была опубликована во время Первой мировой войны с пометкой "Ломша, русская Польша" - это был грязный провинциальный городок, куда Штерна откомандировали стеречь метеостанцию, и избыток свободного времени он тратил на сверхсложные расчеты.

Позже, уже будучи профессором физической химии в Гамбурге, Штерн создал отдельный факультет и заставил своих сотрудников заниматься столь любимыми им атомными и молекулярными пучками - потоками атомов либо молекул, которые движутся по прямой в высоком вакууме и, как показал Штерн, дают возможность провести ряд фундаментальных измерений.

Метод Штерна заключался в том, чтобы приступать к эксперименту только после долгих размышлений. Как правило, он придумывал прибор, который поручал собрать своим ассистентам, студентам и лаборантам, и появлялся в лаборатории только тогда, когда прибор этот был готов: Штерн возникал на пороге, вслед за облаком сигарного дыма, и лично приступал к измерениям. Эксперимент заканчивался, статья выходила - и прибор разбирали, чтобы освободить место для следующего.



Штерн догадывался, что атомные пучки - удобный инструмент для обнаружения эффектов, предсказанных квантовой механикой, тогда только зародившейся и вызывавшей острые споры. Квантовая теория утверждала, что некоторые атомы - например, серебра - должны обладать магнитным моментом (и вести себя как магниты) из-за вращения одного-единственного электрона, который находится дальше всего от ядра. Замысел Штерна состоял в том, чтобы зафиксировать отклонение пучка атомов газообразного серебра, испаряющегося с поверхности серебряной проволоки, в сильном магнитном поле - так он надеялся измерить магнитный момент. Расхождение пучков при выключенном и включенном магнитном поле могло оказаться ничтожным, и оценить его наверняка будет трудно, если не невозможно, думал Штерн и решил обсудить перспективы опыта с коллегой, Вальтером Герлахом. "Может, нам все-таки стоит этим заняться? - спросил он и с готовностью сам себе ответил: - Ну так приступим!"

Герлах учел все технические трудности, но после ряда неудач засомневался, можно ли судить о расхождении по слабому налету серебра, едва заметному на поверхности стеклянной пластинки. Он отнес пластинку к Штерну - посоветоваться, и, пока двое физиков внимательно ее разглядывали, полоса налета толщиной в волос почернела и на глазах разделилась на две, между которыми остался узкий зазор. Как догадался Штерн, четким изображением они были обязаны дешевой сигаре, которую он курил: прежде хорошо обеспеченный, Штерн в тот момент испытывал некие финансовые затруднения и вынужден был отказаться от табака известных марок в пользу более дешевого, с высоким содержанием серы. Вот сера с его сигареты и превратила серебро в черный сульфид серебра. Но на этом история не закончилась: тщательное разглядывание показало, что след отклоненного пучка тоже расщеплен надвое, но уже с зазором толщиной в волос. Исчерпывающее объяснение появилось позже и разом изменило трактовку всей квантовой теории. Магнитный момент, определяемый (условно) скоростью вращения электрона, не бывает каким угодно: он квантован, то есть принимает только заданные значения (которые слегка отличаются друг от друга). Разные группы атомов с электронами в разных спиновых состояниях по-разному реагируют на магнитное поле, что и проявляется в расщеплении пучка. Этот результат считают моментом рождения "пространственного квантования", новой и в то время поразительной области квантовой теории. Исидор Раби называл тот опыт "прославленным экспериментом Штерна - Герлаха". Сам Штерн был обрадован не столько результатом, сколько тем, как он был получен.



В 1943 году за работы по атомным и молекулярным пучкам Отто Штерну вручили Нобелевскую премию. За 10 лет до этого он был изгнан из Германии и поселился в США. Там - и во время войны, и после - ему не удалось получить достаточного финансирования для своих научных проектов, и поэтому, не дожидаясь даже своего 60-летия, он ушел на пенсию и уехал в Калифорнию. Остаток дней Штерн посвятил радостям гастрономии и кино, к которым давно питал слабость. Он скончался 81-летним, в кинозале, куда пришел посмотреть новый фильм.


Квантовый гений


Исидор Раби, в 1930-х годах глава физического факультета Колумбийского университета и лидер американских физиков, так описывал свою первую встречу с выдающимся физиком Джулианом Швингером:

Шел 1935 год, и Раби был занят обдумыванием противоречивой статьи, только что опубликованной Эйнштейном, Подольским и Розеном. Одним парадоксом эта статья ставила под удар все основания квантовой теории. Я читал статью, а мой способ читать статьи заключается в том, чтобы привести кого-нибудь из студентов и объяснить ему суть. Тогда таким студентом оказался некто Ллойд Мотц (ныне профессор астрономии Колумбийского университета). Мы немного поспорили, и вдруг Мотц заявляет, что один человек дожидается за дверью и спрашивает, можно ли его впустить. И тут он вводит этого ребенка. Швингеру тогда было 16. Итак, я велел ему присесть где-нибудь, и он присел. Мотц и я продолжали спорить, и вдруг этот мальчик вмешивается и расставляет все по местам при помощи теоремы о полноте. Теорема о полноте - важная математическая теорема, часто используемая в квантовой теории. И тут я говорю: кто это, черт возьми, такой? Оказывается, второкурсник из Сити-колледжа, двоечник, который проваливает все свои экзамены - пусть и не по физике - короче, учится из рук вон плохо. Наша короткая беседа произвела на меня сильнейшее впечатление. Он уже к тому времени написал статью по квантовой электродинамике. Я спросил, хочет ли он перейти к нам, и он ответил: "Да".


Исидор Раби


Раби - с большим трудом и благодаря рекомендательному письму от другого великого физика, Ганса Бете, добился, чтобы Швингера перевели в Колумбийский университет.

Позже Швингер стал одним из самых знаменитых физиков-теоретиков XX века. Во время Второй мировой войны он работал в лаборатории излучений в МIТ, Массачусетском технологическом институте, над созданием радара и другими задачами. Раби, который состоял там же заместителем директора, вспоминал о привычке Швингера работать ночью и спать днем:

В пять, когда все расходились, можно было встретить Швингера у порога. Мне как-то сказали, что люди имели обыкновение оставлять нерешенные задачи на столах или на доске - и обнаруживали, когда возвращались следующим утром, что Швингер уже все решил... Задачи, которые он решал, были на самом деле фантастическими. Дважды в неделю он делал доклад о своей текущей работе. Стоило Швингеру в чем-то продвинуться, парни по соседству - Дикке и Эд Перселл (два выдающихся физика-экспериментатора, известные в особенности своими работами по ядерному магнетизму) - тут же начинали изобретать с бешеной скоростью разные штуки.


Джулиан Швингер


В 1965 году Джулиан Швингер, уже профессор Гарварда, получил Нобелевскую премию, а заодно стал ходячей легендой - никто не мог, как он, вести теоретический спор прямо на лекции, не пользуясь при этом никакими записями.

В лаборатория излучений MIT родилось множество изобретений и открытий. К примеру, одно из них, радар, сыграло в победе над Германией и Японией куда большую роль, чем атомная бомба. Не менее важным достижением стал полостной магнетрон, собранный Джоном Рэндаллом и Гарри Бутом в Англии. Этот инструмент, устройство которого, казалось, не подчиняется никакой логике, был первым источником излучения высокой плотности в сантиметровом диапазоне, необходимым для воздушных и морских радаров. Его пучок мог поджечь сигарету и издалека заставить машины мигать фарами. Когда прибор привезли в MIT и представили на суд американской физической элиты, группа включала нескольких лучших ядерных физиков страны. Кое-что о высокочастотном излучении они знали по опыту работы над циклотроном, но магнетрон поначалу озадачил даже их.

"Это очень просто, - сказал Раби теоретикам, собравшимся за одним столом разглядывать детали разобранной лучевой трубки. - Это нечто вроде свистка". "Хорошо, Раби, - спросил Эдвард Кондон, - а как работает свисток?" Удовлетворительного объяснения у Раби не нашлось.


Расщепление ядра и цепная реакция


Идея цепной реакции - процесса, который ускоряется за счет размножения активных частиц, - пришла в химию в 1913 году, а в физику 20 годами позже. Таким реакциям свойственно начинаться медленно, иногда с заметной задержкой, а заканчиваться взрывом. Самый известный пример - деление атомных ядер: атом урана-235 захватывает нейтрон, ядро распадается и высвобождает 2 - 3 новых нейтрона; те, в свою очередь, атакуют соседние ядра урана, и процесс деления стремительно набирает ход. В химии реакции с похожими свойствами были известны с конца XIX века и озадачивали даже таких светил, как Роберт Бунзен, знаменитый немецкий химик. Физикохимик Макс Боденштейн провел в Германии обстоятельную работу по выяснению механизмов химических реакций. В 1913 году его заинтересовала реакция между водородом и хлором, инициируемая светом: за "подсветкой" следует задержка, потом реакция ускоряется и внезапно останавливается. Ассистент Боденштейна Вальтер Дюкс так описывает, что происходило:

Когда они вдвоем обдумывали результаты эксперимента, Боденштейн расстегнул свою золотую цепочку от часов и неожиданно попросил Дюкса подержать ее за один конец, пока сам раскрутит другой. "Если мы придаем цепи импульс, - начал он размышлять вслух, - он распространится по всей длине, но, если зажать или выдернуть одно звено, движение прервется". Дюкс спросил: "Значит, это происходит и с нашей реакцией?" - "Неплохая идея. Возможно, стоит назвать ее цепной; давайте это проверим".


Макс Боденштейн


Идея быстро получила признание и начала всплывать в работах ученых, занимавшихся самыми разными областями химической кинетики, в особенности - образованием молекул высших полимеров, основы волокон и пластмасс.

После смерти Боденштейна в 1942 году Дюкс собирался выпросить у его семьи цепочку от часов, но оказалось, что в порыве патриотизма Боденштейн пожертвовал ее на военные нужды, а к часам прикрепил стальную. Тогда Дюкс изготовил ее копию из золота и передал в дар Университету Ганновера.

Лео Сцилард (1898 - 1964), странствующий физик из Венгрии, провел большую часть жизни в гостиничных номерах. Как правило, его имущество умещалось в двух чемоданах. Он покинул Берлин после прихода Гитлера к власти. Позже он вспоминал:

Осенью 1933-го я жил в Лондоне и был занят поиском мест для коллег, лишившихся своих университетских постов с приходом нацистов. Однажды утром я прочел в газете статью про ежегодное собрание Британской ассоциации по развитию науки. Во время заседания, рассказывал репортер, Резерфорд заявил, что разговоры о промышленном использовании атомной энергии - полная чушь. Уверения экспертов в принципиальной невозможности чего-либо всегда меня забавляли. В тот день я прогуливался вдоль Саутгемптон-роу (в Блумсберри, где находилась гостиница Сциларда) и остановился у светофора. Я задумался - а вдруг Резерфорд действительно прав?

Когда сигнал сменился на зеленый и я переходил улицу, мне в голову неожиданно пришла мысль: что, если найти такой элемент, который нейтроны могут расщепить и который, поглотив один нейтрон, испускал бы два? Если такого элемента собрать достаточно много, то он мог бы поддерживать цепную ядерную реакцию, а мы могли бы выделять энергию в промышленных масштабах и конструировать атомные бомбы. Эта мысль стала моей навязчивой идеей, она-то и привела меня в ядерную физику - область, с которой я прежде не имел дела. Сцилард нашел себе в Лондоне лабораторию и попробовал проверить свою идею, однако ни один из элементов, которые он пытался бомбардировать нейтронами, вторичных нейтронов не давал. Сцилард тем не менее считал свою схему достаточно реалистичной и даже спустя несколько месяцев ее запатентовал. Во избежание огласки патент был оформлен на Адмиралтейство.


Лео Сциллард


Примерно в то же время Сцилард пал жертвой невинной шутки, результат которой превзошел все ожидания шутников. Ими были двое молодых физиков - Карл Бош из Германии, и Р.В. Джонс, работавший тогда в Оксфорде. Джонс, представившись редактором Daily Express, позвонил Сциларду и спросил, может ли тот подтвердить, что изобрел радиоактивные лучи смерти. Сцилард буквально взорвался, потому как именно тогда получил наконец патент на цепную ядерную реакцию, и его панику по поводу утечки, пусть и искажающей факты, легко себе представить.

Понадобилось пять лет, чтобы мечты Сциларда стали реальностью: физик Лизе Майтнер (1878 - 1968) вместе с химиками Отто Ганом (1879 - 1968) и Фрицем Штрасманом (1902 - 1980) занималась в Берлине анализом продуктов ядерных превращений. Будучи еврейкой, Майтнер была вынуждена бежать из страны, не дожидаясь ареста. Найдя убежище в Швеции, она поддерживала со своим другом и коллегой Отто Ганом связь по почте. В декабре 1938 года к ней приехал в гости племянник и тоже физик Отто Фриш (1904 - 1979), который работал тогда в знаменитом институте Нильса Бора в Копенгагене. У племянника и тети вошло в привычку встречать Рождество вместе, но тот свой приезд Фриш описывает как самое запоминающееся событие в жизни. За прошедший год был открыт целый ряд продуктов ядерных бомбардировок, которые иногда, как казалось, нарушали установленный ранее закон: столкновение элементарной частицы с ядром может разве что выбить оттуда альфа-частицу (идентичную ядру гелия-4) или бета-частицу (электрон); в результате получались по прогнозам и на практике ядра с зарядом (то есть атомным номером) на два меньше или на один больше, чем у ядра-родителя. Среди продуктов бомбардировки урана Ган и Штрасман обнаружили, как они полагали, изотопы радия. (Изотопы - это разновидности элемента, отличающиеся только числом нейтронов в ядре; поскольку число положительно заряженных протонов в ядре и, следовательно, отрицательно заряженных электронов снаружи у них одинаково, то изотопы с химической точки зрения идентичны.) Результат казался необъяснимым, поскольку у радия ядро меньше, чем у урана, и Лизе Майтнер предупредила Гана, что следует тщательно все проверить, прежде чем публиковать статью о необъяснимой аномалии.


Отто Ган и Лизе Майтнер


Когда Отто Фриш впервые навестил тетю в Кунгэльве, маленьком шведском городке, где та отдыхала с друзьями, он обнаружил ее размышляющей над последним письмом Отто Гана. Вот как он описывает встречу:

Я собирался рассказать ей о новом эксперименте, который задумал, но она и не думала меня слушать; вместо этого она попросила меня прочесть письмо. Его содержание было настолько ошеломляющим, что я был вынужден отнестись к нему скептически. Ган и Штрасман выяснили, что три получившихся у них вещества не были радием с точки зрения химии; более того, оказалось затруднительно отделить их от бария, который, как обычно, они добавили, чтобы облегчить процедуру химического разделения. Они пришли к выводу, неохотно и с колебаниями, что это были изотопы бария (ядра которых вдвое меньше ядер урана).

Было ли это просто ошибкой? "Нет, - сказала Лизе Майтнер, - Ган для этого слишком хороший химик". Но как мог барий получиться из урана? Никогда еще от ядер не отщепляли больших кусков, чем отдельные протоны и ядра гелия, а чтобы отщепить сразу много частиц, требовалось слишком много энергии. Также не представлялось возможным, что урановое ядро будет разрезано поперек. Ядро не похоже на хрупкий материал, какой режут и ломают; Георгий Гамов давно предположил, а Бор убедительно аргументировал, что ядро скорее похоже на каплю жидкости. Возможно, капля может превратиться в две капли более плавно: сначала вытянуться, потом сжаться посередине, а потом разорваться - но не сломаться напополам. Мы знали, что существует сильное взаимодействие, которое будет препятствовать такому процессу, подобно тому как поверхностное натяжение обычной жидкости мешает капле распасться на части. Но ядра отличаются от капель одной важной особенностью: они несут электрический заряд, а отталкивание зарядов противодействует поверхностному натяжению. На этом месте мы оба присели на поваленное дерево (разговор происходил во время нашей прогулки по заснеженному лесу, я был на лыжах, а Лизе Майтнер заявила, что справится и без них) и приступили к расчетам на обрывках бумаги. Заряд уранового ядра, как мы выяснили, и в самом деле достаточно велик, чтобы преодолеть силы поверхностного натяжения практически целиком, поэтому урановое ядро должно напоминать крайне шаткую, неустойчивую каплю, готовую разделиться от малейшего толчка - такого, как удар одного-единственного нейтрона.

Но была и другая проблема. После разделения капли будут удаляться друг от друга за счет взаимного электростатического отталкивания, получая высокую скорость и невероятно высокую энергию, в общей сложности порядка 200 МэВ. К счастью, Лизе Майтнер вспомнила эмпирическую формулу для вычисления масс ядер и вывела, что пара ядер, получающихся при распаде урана, будет легче его примерно на одну пятую массы протона. Далее, когда масса исчезает, по формуле Эйнштейна Е=mc^2 возникает энергия, и одна пятая массы протона как раз соответствует 200 МэВ. Итак, источник энергии был скрыт здесь. Все сходилось!


Отто Фриш


Несколько дней спустя я отправился в Копенгаген в сильном волнении. Я догадался предъявить наши измышления - тогда это не казалось чем-то большим - Бору, которому предстояло вот-вот отбыть в США. У него для меня было всего несколько минут, но стоило мне начать рассказывать, как он ударил себя кулаком по голове и запричитал: "О, какими идиотами мы все были! Да, но это прекрасно! Именно так и должно быть! Вы с Лизе Майтнер уже написали статью?" - "Нет, - сказал я, - но как-нибудь обязательно опубликуем". Бор пообещал никому не проговориться, пока статья не выйдет". А потом он отправился встречать свой корабль.

Фриш спросил некоего американского биолога из лаборатории, как в биологии называется процесс, когда из одной клетки получаются две. "Деление", - ответил тот, и так, стараниями Фриша, термин "деление ядер" появился на свет.


Знание математики бесценно


Физик Георгий Гамов бежал в США из СССР. Говоря о том, что с ученым в эпоху политической нестабильности может приключиться все что угодно, он рассказывал такую историю:

Вот сюжет, который поведал мне один из моих друзей, Игорь Тамм (Тамм - лауреат Нобелевской премии по физике 1958 года). Однажды, когда город был занят красными, Тамм (в те времена профессор физики в Одессе) заехал в соседнюю деревню узнать, сколько цыплят можно выменять на полдюжины серебряных ложек - и как раз в это время деревню захватила одна из банд Махно. Увидев на нем городскую одежду, бандиты привели Тамма к атаману - бородатому мужику в высокой меховой шапке, у которого на груди сходились крест-накрест пулеметные ленты, а на поясе болталась пара ручных гранат.

- Сукин ты сын, коммунистический агитатор, ты зачем подрываешь мать-Украину? Будем тебя убивать.
- Вовсе нет, - ответил Тамм. - Я профессор Одесского университета и приехал сюда добыть хоть немного еды.
- Брехня! - воскликнул атаман. - Какой такой ты профессор?
- Я преподаю математику.
- Математику? - переспросил атаман. - Тогда найди мне оценку приближения ряда Макларена первыми n-членами. Решишь - выйдешь на свободу, нет - расстреляю.

Тамм не мог поверить своим ушам: задача относилась к довольно узкой области высшей математики. С дрожащими руками и под дулом винтовки он сумел-таки вывести решение и показал его атаману.

- Верно! - произнес атаман. - Теперь я вижу, что ты и вправду профессор. Ну что ж, ступай домой.

Кем был этот человек? Никто не знает. Если его не убили впоследствии, он вполне может преподавать сейчас высшую математику в каком-нибудь украинском университете.


Игорь Тамм


Опасности продолжали подстерегать ученых и после революции. Физик-теоретик Марк Азбель, который после многих лет тюрьмы и преследований сумел укрыться в Израиле, делится другим примером:

Эту историю я знаю со слов профессора Повзнера, который преподавал в Военно-инженерной академии. Однажды он вошел в аудиторию, готовясь начать лекцию с обычного вступления о господстве русских в математике, а затем перейти собственно к математике. Но, к его ужасу, за минуту до того, как начать говорить, он заметил, что в аудитории присутствует генерал, глава Академии. Он подумал и решил, что лучше будет посвятить всю лекцию светилам русской математики. К счастью, он был невероятно одаренным человеком и умел быстро соображать - в считанные секунды он придумал чудесную лекцию о русской математике XII века. Он предавался полету фантазии целый час и остановился только за пять минут до звонка - спросить, есть ли вопросы. И заметил, что один из студентов тянет руку.

- Я вас слушаю...
- Вы так увлекательно рассказываете про русскую математику в Средние века. Не подскажете ли нам, в какие книги по этому поводу заглянуть? Я бы хотел получше ознакомиться с темой...

Не имея времени подумать, профессор немедленно ответил:

- Увы, это невозможно! Все архивы сгорели во времена татаро-монгольского ига!

Когда лекция закончилась, к лектору подошел генерал и спросил:

- Итак, профессор... Все архивы сгорели, верно?

Только тогда несчастный профессор осознал, что именно он произнес. Беззвучный вопрос повис в воздухе: если все доказательства русского господства в этой науке сгорели, как мог сам профессор что-нибудь знать о математике до нашествия? Он был на грани паники, когда неожиданно генерал тепло ему улыбнулся, развернулся и вышел. Этот высокопоставленный командир был человеком сообразительным и достойным; иначе профессору Повзнеру было бы не избежать крупных неприятностей.


Продолжение следует!
28 февраля 2016 02:19
Вернуться назад